Sine Bell¶
- class nmrPype.fn.SP.SineBell(sp_off: float = 0.0, sp_end: float = 1.0, sp_pow: float = 1.0, sp_size: int = 0, sp_start: int = 1, sp_c: float = 1, sp_one: bool = False, sp_hdr: bool = False, sp_inv: bool = False, sp_df: bool = False, sp_elb: float = 0.0, sp_glb: float = 0.0, sp_goff: float = 0.0, mp_enable: bool = False, mp_proc: int = 0, mp_threads: int = 0)¶
Data Function object for performing a Sinusoidal Filter on the data.
- Parameters:
sp_off (float) – PI value starting offset
sp_end (float) – PI value ending offset
sp_pow (float) – Sine function exponent
sp_size (int) – Span of data to apply sinusoidal filter to
sp_start (int) – Starting point of sinusoidal filter window
sp_c (float) – Scaling value for the first point of the sinusoidal filter window (e.g. scale first point by 0.5 or 2.0)
sp_one (bool) – Set all points outside of sinusoidal filter window to 1 instead of 0
sp_hdr (bool) – Use constant values from the header
sp_inv (bool) – Invert the sinusoidal filter window
sp_df (bool) – Adjust PI value starting offset and gaussian offset for Digital Oversampling.
sp_elb (float) – Add an exponential filter by value in Hz
sp_glb (float) – Add a gaussian filter by value in Hz
sp_goff (float) – Set gausian offset, within 0 to 1.
mp_enable (bool) – Enable multiprocessing
mp_proc (int) – Number of processors to utilize for multiprocessing
mp_threads (int) – Number of threads to utilize per process
- applyFunc(array: ndarray, a1: float, a2: float, a3: float, fps: int, df: float, verb: tuple[int, int, str] = (0, 16, 'H')) ndarray ¶
Apply sine bell to array
- Parameters:
array (np.ndarray) – Target array to apply function to
a1 (float) – offset value
a2 (float) – end value
a3 (float) – exponential power value
fps (int) – first point scale to apply
df (float) – digital filter value
verb (tuple[int,int,str], optional)
print (Tuple containing elements for verbose) –
Verbosity level
Verbosity Increment
Direct Dimension Label
(0 (by default) –
Verbosity level
Verbosity Increment
Direct Dimension Label
16 –
Verbosity level
Verbosity Increment
Direct Dimension Label
'H') –
Verbosity level
Verbosity Increment
Direct Dimension Label
- Returns:
new_array – Array with sinusoidal filter
- Return type:
np.ndarray
- static clArgs(subparser, parent_parser)¶
Adds Sine Bell parser to the subparser, with its corresponding args Called by
nmrPype.parse.parser()
.- Parameters:
subparser (_SubParsersAction[ArgumentParser]) – Subparser object that will receive function and its arguments
- initialize(data: DataFrame)¶
- Initialization follows the following steps:
Handle function specific arguments
Update any header values before any calculations occur that are independent of the data, such as flags and parameter storage
- Parameters:
data (DataFrame) – target data to manipulate
- parallelize(array: ndarray, verb: tuple[int, int, str] = (0, 16, 'H')) ndarray ¶
See
nmrPype.fn.function.DataFunction.parallelize()
for documentation.
- process(array: ndarray, verb: tuple[int, int, str] = (0, 16, 'H')) ndarray ¶
See
nmrPype.fn.function.DataFunction.process()
for documentation
- run(data: DataFrame) int ¶
Sine Bell’s run utilizes the generic function run but saves computation time by skipping the running step for trivial constants.
For example, a power of 0 for the sinusoidal filter will return the data unchanged.
See also
nmrPype.fn.function.DataFunction.run
Default run function