Data Function¶
- class nmrPype.fn.function.DataFunction(params: dict = {})¶
- Data Function is a template class for all types of functions to run on the NMR data. New user functions should copy format laid out by this class. - Parameters:
- params (dict) – Dictionary of parameters associated with the designated function 
 - static clArgs(subparser, parent_parser)¶
- Command-line arguments template - clArgs adds function parser to the subparser, with its corresponding default args called by - nmrPype.parse.parser(). The Destinations are formatted typically by {function}_{argument}, e.g. the zf_pad destination stores the pad argument for the zf function.- Parameters:
- subparser (_SubParsersAction[ArgumentParser]) – Subparser object that will receive function and its arguments 
 
 - initialize(data: DataFrame)¶
- Initialization follows the following steps:
- Handle function specific arguments 
- Update any header values before any calculations occur that are independent of the data, such as flags and parameter storage 
 
 - Parameters:
- data (DataFrame) – Target data to manipulate 
 
 - static mpPrint(func_name: str, chunk_num: int, chunk_sizes: tuple[int, int], type: str = 'start')¶
- Print out multiprocess information for verbose print - Parameters:
- func_name (str) – Name of function to display on verbose print 
- chunk_num (int) – Number of chunks being processed 
- chunk_sizes (tuple[int,int]) – Size of majority chunk [0] and outlier chunk [1] 
- type (str, optional) – Start print or end print type, by default ‘start’ 
 
 
 - static nullDeclare(subparser, parent_parser)¶
- Null Function declaration - Parameters:
- subparser (_SubParsersAction[ArgumentParser]) – Subparser object that will receive null function 
 
 - parallelize(array: ndarray, verb: tuple[int, int, str] = (0, 16, 'H')) ndarray¶
- The General Multiprocessing implementation for function, utilizing cores and threads. Parallelize should be overloaded if array_shape changes in processing or process requires more args. - Parameters:
- array (ndarray) – Target data array to process with function 
- verb (tuple[int,int,str], optional) 
- print (Tuple containing elements for verbose) – - Verbosity level 
- Verbosity Increment 
- Direct Dimension Label 
 
- (0 (by default) – - Verbosity level 
- Verbosity Increment 
- Direct Dimension Label 
 
- 16 – - Verbosity level 
- Verbosity Increment 
- Direct Dimension Label 
 
- 'H') – - Verbosity level 
- Verbosity Increment 
- Direct Dimension Label 
 
 
- Returns:
- new_array – Updated array after function operation 
- Return type:
- ndarray 
 
 - process(array: ndarray, verb: tuple[int, int, str] = (0, 16, 'H')) ndarray¶
- Process is called by function’s run, returns modified array when completed. Likely attached to multiprocessing for speed - Parameters:
- array (ndarray) – Target data array to process with function 
- verb (tuple[int,int,str], optional) 
- print (Tuple containing elements for verbose) – - Verbosity level 
- Verbosity Increment 
- Direct Dimension Label 
 
- (0 (by default) – - Verbosity level 
- Verbosity Increment 
- Direct Dimension Label 
 
- 16 – - Verbosity level 
- Verbosity Increment 
- Direct Dimension Label 
 
- 'H') – - Verbosity level 
- Verbosity Increment 
- Direct Dimension Label 
 
 
- Returns:
- Updated array after function operation 
- Return type:
- ndarray 
 
 - run(data: DataFrame) int¶
- Main body of function code.
- Initializes Header 
- Start Process (process data vector by vector in multiprocess) 
- Update Header 
- Return information if necessary 
 
 - Overload run for function specific operations - Parameters:
- data (DataFrame) – Target data to to run function on 
- Returns:
- Integer exit code (e.g. 0 success 1 fail) 
- Return type:
- int 
 
 - updateHeader(data: DataFrame)¶
- Update the header following the main function’s calculations. Typically this includes header fields that relate to data size. - Parameters:
- data (DataFrame) – Target data frame containing header to update 
 
 - static verbPrint(func_name: str, index, size, step, verb: tuple[int, str] = (16, 'H'), keepIndex: bool = False)¶
- Print out progress through each array using verbosity - Parameters:
- func_name (str) – Name of function to display on verbose print 
- index (_type_) – Current array out of total arrays to print 
- size (_type_) – Total array count to print 
- step (_type_) – How many elements are in each array 
- verb (tuple[int,int,str], optional) – - Tuple containing elements for verbose print, by default (16,’H’)
- Verbosity Increment 
- Direct Dimension Label 
 
 
- keepIndex (bool, optional) – Whether or not to divide index by step size, by default False 
 
 
 
Transpose Template¶
- class nmrPype.fn.TP.Transpose(tp_noord: bool = False, tp_exch: bool = False, tp_minMax: bool = True, tp_axis: int = 0, params: dict = {})¶
- Template Data Function object for transposition operations - Parameters:
- tp_noord (bool) – Do not change header FDORDER1 and 2. 
- tp_exch (bool) – Exchange header parameters for the two dimensions. 
- tp_minMax (bool) – Update FDMIN and FDMAX. 
- tp_axis (int) – Indirect dimension axis to be swapped with direct dimension 
 
 - static clArgs(subparser, parent_parser)¶
- Transpose command-line arguments - Adds Transpose parser to the subparser, with its corresponding default args. Called by - nmrPype.parse.parser()- Note - Command-line arguments function is only called once for all transpose types - Parameters:
- subparser (_SubParsersAction[ArgumentParser]) – Subparser object that will receive function and its arguments 
 
 - static headerArgsTP(parser)¶
- Helper function to parse commands related to header adjustment. 
 - initialize(data: DataFrame)¶
- Initialization follows the following steps:
- Handle function specific arguments 
- Update any header values before any calculations occur that are independent of the data, such as flags and parameter storage 
 
 - Parameters:
- data (DataFrame) – Target data frame to initialize 
 
 - matrixTP(array, dim1, dim2)¶
 - parallelize(array: ndarray) ndarray¶
- Blanket transpose parralelize implementation for function, utilizing cores and threads. Function Should be overloaded if array_shape changes in processing or process requires more args. - Note - Multiprocessing and mulithreading transpose is likely slower due to stitching. - Parameters:
- array (ndarray) – Target data array to process with function 
- Returns:
- new_array – Updated array after function operation 
- Return type:
- ndarray 
 
 - process(array: ndarray) ndarray¶
- Process is called by function’s run, returns modified array when completed. Likely attached to multiprocessing for speed - Parameters:
- array (ndarray) – array to process 
- Returns:
- modified array post-process 
- Return type:
- ndarray